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We introduce k-step exclusion processes as generalizations of the simple exclu-
sion process. We state their main equilibrium properties when the underlying
stochastic matrix corresponds to a random walk or is positive recurrent and
reversible. Finally, we prove laws of large numbers for tagged and second-class
particles.
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1. INTRODUCTION

Let S be a finite or countable set, and p( } , } ) a transition matrix of a
discrete Markov chain on S.

For k # N :=[1, 2, 3,...] (the set of positive integer), a k-step exclusion
process is a natural generalization of a simple exclusion process. It is a
continuous time Markov process of state space

X=[0, 1]S, the set of configurations of particles distributed on S with
at most one particle per site.

Informally this process can be described in the following way: on each
site of S we have one clock that rings (independently of others clocks) at
random exponential times with parameter 1. If a particle is present at site
x when the clock associated to this site rings, then the particle occupies the
first vacant site encountered in the sequence (Xn)1�n�k , where [Xn]n is the
Markov chain with probability transition p( } , . ) starting at x (site x itself
is consider vacant for the attempt, i.e., if the chain returns to x before
encountering an empty site then the particle stays at x). If no empty site
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is encountered during these k attempts then the movement is cancelled and
the particle stays at x (waiting for the next of its clock rings).

When k=1 the process is exactly the simple exclusion process intro-
duced by Spitzer (1970).(19) This process has been intensively studied since
then; we refer the reader to Liggett's book (1985) (17) Chapter VIII for an
overview of its principal properties.

When k goes to infinity it is plausible that these processes will
approach the Long Range Exclusion Process (see Guiol (1995)(8) or Andjel
et al. (1998) (3)). In the Long Range Exclusion Process a particle that
moves, follows the chain Xn until it finds an empty site, so that particles
can travel long distance in short time. This process was also introduced by
Spitzer (1970) in ref. 19 and studied systematically by Liggett (1980) in
ref. 16 and in a lesser proportion by Zheng (1988)(20) and Guiol (1997). (9)

A version of the k-step exclusion processes was used by Liggett in ref. 16
to approximate the long range exclusion process, but in that case particles
disappear if they do not encounter a vacant site in their attempt to move.

Recent developments in the studies of long range processes such as the
Long Range Exclusion Process, (9, 3) the Hammersley Process (see Aldous
and Diaconis (1995) (1)), Self-organizing Particle Systems (see Carlson et al.
(1993)(5)), the Toom model (see Lebowitz et al. (1996) (13)) show the exist-
ence of a real interest to have (Feller) approximations for these processes.

The aim of this paper is to give an overview of the principal properties
of k-step exclusion processes.

In Section 2 we review some definitions and properties. In Section 3
are proved the following equilibrium results.

We denote by Ik the set of invariant measure of the k-step Exclusion
Process.

Let \: S � [0, 1], we denote by &\ the product measure such that

&\['(xi)=1, 1�i�n]= `
n

i=1

\(xi)

for all n # Z+ :=[0, 1, 2,...] (the set of nonnegative interger), xi # S,
1�i�n.

Suppose that p( } , } ) is reversible. Then we have

Theorem 1.1. Let p( } , } ) be reversible with ? i.e.,

?(x) p(x, y)=?( y) p( y, x) for all x, y # S

and

\(x)=
?(x)

1+?(x)
(1)
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Then for all k�1

&\ # Ik

This result is absolutely similar to the one in the simple exclusion case
(see Liggett (1985) Chapter VIII, p. 380). We recall that for this last
process the double stochasticity of the transition matrix p( } , } ) was also a
sufficient condition to show that Bernoulli product measures with constant
densities were invariant measures too. At the beginning of Section 3 we give
a counter example for which this result is no more true for 2-step exclusion
process.

Nevertheless, for a random walk on Zd we have the (familiar) results:

Theorem 1.2. Suppose p(x, y)= p(0, y&x) for all x, y # Zd then

&: # Ik

for every constant : # [0, 1].
Furthermore in this base Bernoulli measures with constant densities

are the only (ergodic) invariant measures that are translation invariant. We
denote by S the set of translation invariant measures, (S)e the set of
ergodic elements of S and (Ik)e the set of extremal elements of Ik .

Theorem 1.3. Suppose p(x, y)= p(0, y&x) for all x, y # Zd and
p( } , } ) irreducible then

(Ik & S)e=[&: : : # [0, 1]]

When the transition matrix p( } , } ) is reversible and positive recurrent
(ergodic) we are able, as for the simple exclusion process, to characterize
all the invariant measures. In this case there is a unique reversible proba-
bility stationary measure (for the chain p( } , } )), ?, so that, according to
Theorem 1.1, &\ # Ik , with \ defined as in (1). Denote by &(n) the measure

&(n)( } )=&\ \} } :
x

'(x)=n+
It is not difficult to prove that if p( } , } ) is irreducible, then these measures
are invariant and extremal.

Theorem 1.4. Suppose that p(x, y) is a positive recurrent, revers-
ible, and irreducible matrix on S. Then

(a) (Ik)e=[&(n), 0�n��];
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(b) If +[': �x '(x)=n]=1, then limt � � +Sk(t)=&(n) for 0�n��,
where &�=&(�) is the measure concentrated on '#1.

This result is also a generalization to the Instep exclusion of a simple
exclusion result (see Liggett (1985), (17) p. 384).

In Section 4 we state some properties for a tagged particle and for a
second class particle involved in a k-step exclusion processes. In that
section we suppose S=Zd and p(x, y)= p(0, y&x) for all x, y # Zd (i.e.,
p( } , } ) corresponds to a random walk on Zd).

Informally a tagged particle behaves exactly like a regular particle of
the system. A second class particle moves like other particles (with the
exclusion rule) except that when a regular (``first class'') particle tries to
jump onto it, they have to exchange positions.

We first concentrate on the k-step exclusion process as seen from a
tagged particle. Tagged particles for the simple exclusion process were
introduced by Spitzer (1970), (19) and were studied by Arratia (1983), (4)

Ferrari (1986)(6) and Saada (1987).(18)

We generalize to k-step exclusion some results of invariance and
ergodicity of product Bernoulli measures as seen from a tagged particle
obtained from ref. 6. For the notation of the following results we refer the
reader to Section 4.1.

Theorem 1.5. (a) The Palm measure &̂\ of &\ is invariant for the
tagged particle process, i.e.,

&̂\S� k(t)=&̂\

(b) Furthermore if p( } , } ) is irreducible

(I� k & Ŝ)e=[&̂\ : 0�\�1]

The second class particle was introduced to analyze the shock struc-
ture and its fluctuations for the simple exclusion process (see Ferrari and
Fontes (1993) (7) for a review on the topic). We show that all product
Bernoulli measures with constant densities p # ]0, 1] as seen from a second
class particle are invariant if and only if p( } , } ) is symmetric:

Theorem 1.6. &̂\ # I� k for all \ # ]0, 1] if and only if p( } , } ) is sym-
metric.

In Section 5 we prove laws of large numbers for the tagged particle
and for the second class particle, showing that Xt �t (where Xt is the posi-
tion of the tagged particle at time t) and Yt �t (where Yt is the position of
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the second class particle at time t) converge a.s. and in L1 (Theorems 5.1
and 5.4).

Although there are strong links and similarities between simple and
k-step exclusion they do not always behave in the same way. For the sym-
metric case duality relations fail for the k-step exclusion processes. This
technique was the key tool for the study of the symmetric simple exclusion
process (see ref. 17, Chapter VIII, Section 1). Furthermore, results obtained
in the symmetric case have also some relevance for asymmetric case. For
instance the method to prove that Bernoulli product measures with con-
stant densities are extremal for the asymmetric simple exclusion process
(see the end of the proof of Proposition 2, p. 377 in Saada (1987) (18)) relies
highly on the result for the symmetric case. In particular this last fact was
one ingredient to prove the strong laws of large numbers for the tagged
particle for the simple exclusion case in Saada (1987).(18)

2. DEFINITIONS AND REMARKS

Let S be a finite or countable set, [Xn]n # Z+ be a Markov chain on S
with transition matrix p( } , } ), Px(X0=x)=1. Let k # N, under the mild
hypothesis

sup
y # S

:
x # S

p(x, y)<+�

one can define a continuous semi-group Sk(t) on C(X) (see ref. 17, p. 30)
with infinitesimal generator 0k given by: for all cylinder function f,

0k f (')= :
'(x)=1, '( y)=0

qk(x, y, ')[ f ('xy)& f (')] (2)

where qk(x, y, ')=Ex[>_y&1
i=1 '(Xi), _y�_x , _y�k] is the intensity for

moving from x to y on configuration ' and _y=inf [n�1: Xn= y] is the
first (non zero) arrival time at site y of the chain starting at site x.

By Hille-Yosida's theorem the closure of 0k corresponds to a con-
tinuous Markov semi-group, which corresponds to the k-step exclusion
process.

Remark 2.1. It if also possible to construct this process via the
graphical construction due to Harris (1978).(11)

Let P be the set of probability measures on X. When S=Zd we will
denote by S the set of elements of P which are translation invariant.
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For every + # P we denote by +Sk(t) the probability measure defined
by

| f d+ Sk(t)=| Sk(t) f d+

for all f # C(X).
Let D be the set of cylinder functions on X, and let Ik denote the set

of elements of P which are invariant by the k-step exclusion process, i.e.,

Ik=[+ # P : +Sk(t)=+ for all t]

={+ # P : | 0k f d+=0 for all f # D= (3)

Remark 2.2. For all k # N, k-step exclusion process has the Feller
property:

for all f # C(X) and all t>0, we have Sk(t) f # C(X)

The second equality in (3) is due to that fact.

Remark 2.3. One can write the rates in the following way: for all
k # N, x, y # S and ' # X we have

qk(x, y, ')= p(x, y)+ :
z{x, y

p(x, z) p(z, y) '(z)+ } } }

+ :
z1{x, y,..., zk&1{x, y

p(x, z1) } } } p(zk&1 , y) '(z1) } } } '(zk&1)

In particular we have for any k, x, y, '

qk(x, y, ')�p(x, y)

Remark 2.4. There is a lack of monotonicity in k of these pro-
cesses. i.e., if f # C(X) is a monotone increasing function, it does not imply
Sk+1(t) f �Sk(t) f.

This can be seen in the following simple example.
Let S=[0, 1, 2], p(0, 1)= p(1, 2)= p(2, 0)=1. Denote by ' the initial

configuration such that '(0)='(1)=1, '(2)=0. Then construct a coupling
(!'

t , `'
t ) with !'

t and `'
t being respectively the 2-step exclusion process

and the simple exclusion process starting from configuration '. Then
!'

0=`'
0=', but with a positive probability the particles on site 0 will try to
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jump before the particles on site 1, if this happens at time $& then !'
$ �� `'

$

and !'
$ �� `'

$ . K

3. EQUILIBRIUM RESULTS

Remark 3.1. The correspondence between the simple exclusion
process and the k-step exclusion processes is not as easy as expected. For
instance the condition p( } , } ) doubly stochastic does not assure anymore
the invariance of the product measure with constant densities when k�2,
as one can see in the following example.

Let S=[&1, 0, 1] suppose that p(&1, 0)= p(&1, 1)= p(0, 1)=1�2,
p(0, &1)= p(1, 0)=1�3, p(&1, &1)= p(1, 1)=0, p(0, 0)=1�6, p(1, &1)
=2�3. Then p( } , } ) is doubly stochastic so that the product measure &: is
invariant for the simple exclusion process for every constant : # [0, 1]
(cf. Theorem 2.1 (a) Chap. VIII in ref. 17). But a simple calculation using
the generator of the 2-step exclusion process gives

| 02 1[' # X: '(&1)='(0)=1] d&:=
:2(1&:)

36
{0

for every constant : # ]0, 1[. This means that these measures are not
invariant for the 2-step exclusion process for that particular p( } , } ).

Nevertheless, to characterize all the invariant and translation invariant
measures is most of the time an easy generalization of the simple exclusion
case.

The following properties are some generalizations of well known
results for the simple exclusion process.

3.1. Proofs of Theorem 1.1 and 1.2

We will prove the following proposition which contains both results.

Proposition 3.2. For all k�1,

(a) Suppose there exists ?( } ): S � R+ such that

?(x) p(x, y)=?( y) p( y, x) for all x, y # S (4)

Then,

&\ # Ik

where \(x)=?(x)�[1+?(x)].
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(b) If [ p( } , } )] is translation invariant then for all constant
: # [0, 1], we have

&: # Ik

Proof. Part (a) is a straight-forward adaptation of part (b) of
Theorem 2.1, p. 380 in Liggett's book.(17) For a detailed proof we refer the
reader to ref. 8.

Part (b) follows the same ideas but need more care. We prove (b) for
k=2. The general case consists in gathering terms that annihilate each
other. As it is quite long and tedious no more detail will be given.

For all A/Zd, |A|=n finite and fA(')=>u # A '(u) we need to show
that

| 0k fA d&:=0

Applying (2) to fA :

| 0k fA(') d&:= :
y # A

:
x # Ac

| qk(x, y, ') '(x)[1&'( y)] `
u # A, u{ y

'(u) d&:

& :
y # A

:
x # Ac

| qk( y, x, ') fA(')[1&'(x)] d&: (5)

Using Remark 2.3 we obtain the sum of the three following terms
(multiplied by :n(1&:))

{ :
y # A

:
x # Ac

p(x, y)& :
y # Ac

:
x # A

p(x, y)= (6)

{ :
y # A

:
z # A"[ y]

:
x # Ac

p(x, z) p(z, y)& :
x # A

:
z # A"[x]

:
y # Ac

p(x, z) p(z, y)= (7)

: { :
x # Ac

:
z # Ac"[x]

:
y # A

p(x, z) p(z, y)& :
y # Ac

:
z # Ac"[ y]

:
x # A

p(x, z) p(z, y)=
(8)

Those three terms are zero: for (6) we only have to add and subtract
the same quantity in the brackets �y # A �x # A p(x, y)

:
y # A

:
x # S

p(x, y)=|A|= :
y # S

:
x # A

p(x, y)
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For (7) we add and subtract �y # A �z # A �x # A p(x, z) p(z, y), and
since

:
y # A

:
z # A

:
x # S

p(x, z) p(z, y)= :
y # A

:
z # A

p(z, y)

= :
z # A

:
x # A

p(x, z)

= :
y # S

:
z # A

:
x # A

p(x, z) p(z, y)

denoting p= p(x, x) we have

p { :
y # A

:
x # Ac

p(x, y)& :
y # Ac

:
x # A

p(x, y)=
which is null by the preceding argument.

Finally for (8) we add and subtract �y # A �z # Ac �x # A p(x, z) p(z, y)
and since

:
y # A

:
z # Ac

:
x # S

p(x, z) p(z, y)

= :
y # A

:
z # Ac

p(z, y)= :
z # Ac

:
x # A

p(x, z)= :
y # S

:
z # Ac

:
x # A

p(x, z) p(z, y)

it remains

p { :
y # Ac

:
x # A

p(x, y)& :
y # A

:
x # Ac

p(x, y)=
which is null as in the first step. This concludes (b). K

3.2. Ergodicity

We will only sketch the proof of Theorem 1.3 as it is very standard
(see Liggett's book Chapter VIII, for instance).

As these processes are Feller it is possible to show that if +1 and +2 are
in (Ik & S)e then one can find a coupled measure &~ # (I� k & S~ )e with
marginals +1 and +2 . Using basic coupling then one has to show that if
&~ # (I� k & S~ ) then &~ ['�! or '�!]=1. Those two points are sufficient to
conclude (see Andjel (1981) (2) for instance). (A complete detailed proof can
be found in Guiol (1995) (8)).
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3.3. Proof of Theorem 1.4

(a) is a consequence of (b), and (b) is a straight-forward adaptation
of the proof of Theorem 2.17, p. 384 of Liggett's book.(17) For a very
detailed proof we refer the reader to ref. 8. K

4. TAGGED AND SECOND CLASS PARTICLES IN THE
k-STEP EXCLUSION PROCESS

We are interested in the k-step exclusion process as seen from a tagged
particle (respectively a second class particle).

For all these processes the origin will always be occupied.
For the tagged particle, after a random exponential time with mean 1,

a transition of the system will occur moving the origin to Xr , where [Xn]
is a Markov chain with probability transition p( } , } ), X0=0 and {=
inf[1�n�k: '(Xn)=0]. When [1�n�k : '(Xn)=0]=< we set X�=0
and the system does not move. The other particles move as in the k-step
exclusion process.

For the second class particle we add to the preceding rules that after
a random exponential time mean 1, the system is translated putting the
origin on y if '( y)=1 with probability qk( y, 0, '). So the second particle
moves like a standard particle but when another particle arrives on its site
(here the origin) then the two particles exchange their positions.

4.1. Notations and Definitions

We will suppose S=Zd and p(x, y)= p(0, y&x).
The state space will be a little modified:

X� =X & [': '(0)=1]

The k-step exclusion process as seen from a tagged particle has for
state space X� and for generator:

0� k f (')= :
'(x)=1, '( y)=0x, y{0

qk(x, y, ')[ f ('xy)& f (')]

+ :
'( y)=0, y{0

qk(0, y, ')[ f ({&y'0y)& f (')]

where {&y'(z)='(z+ y).
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We will also consider the k-step exclusion process as seen from a
second class particle on X� with generator:

0� k f (')=0� k f (')+02 k f (')

where

02 k f (')= :
'(x)=1, x{0

qk(x, 0, ')[ f ({&x'0x)& f (')]

By Liggett's criterion:(14)

:
'(x)=1, '( y)=0x, y{0

qk(x, y, ')[ f ('xy)& f (')]

is a generator of a contractive semi-group and

:
'( y)=0, y{0

qk(0, y, ')[ f ({&y'0y)& f (')]

(respectively

:
'(x)=1, x{0

qk(x, 0, ')[ f ({&x '0x)& f (')])

is a bounded operator. Hence by Theorem 2 of Gustafson(10) 0� k and 0� k

are infinitesimal generators of contractive semi-groups that we denote
respectively by S� (t) and S� (t). To each of these semi-groups corresponds a
unique Markov process on X� with respective generators 0� k and 0� k .

Let P(X� ) be the set of probability measures on X� , and I� k=
[+ # P(X� ): +S� k(t)=+] (respectively I� k=[+ # P(X� ): +S� k(t)=+]) the set of
invariant measures for the k-step exclusion process as seen from the tagged
particle (respectively the second class particle).

4.2. Invariant Measures

Let + # S be such that ;(+)=+['(0)=1]>0. We define the Palm
measure of +, by +̂, a measure on X� such that

+̂=+( }. | '(0)=1)

(Let us recall that if + puts all its mass on the empty configuration
'#0 (i.e., +=$0) one defines +̂=$[0] as the measure that puts all its mass
on configuration with only one particle at 0).
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We denote

S� =[+̂: + # S]

Proof of Theorem 1.5. The proof is a straightforward adaptation of
the proofs of theorems 2.3 and 2.4 of Ferrari in ref. 6. K

Proof of Theorem 1.6. For this we prove the following proposition
that contains the theorem.

Proposition 4.1. For all k�1,

(a) If p( } , } ) is symmetric and + # S then +̂ # I� k .

(b) Let \ # ]0, 1], &̂\ # I� 1 if and only if p( } , } ) is symmetric.

(c) Let \ # ]0, 1], for S=Z if p(x, x+1)=1& p(x, x&1)= p then
&̂\ # I� k if and only if p( } , } ) is symmetric (i.e., p=1�2).

(d) Except (possibly) for a finite number (�k) of densities we have

&̂\ # I� k implies p( } , } ) is symmetric

Remark 4.2. (a) and (d) prove Theorem 1.6.
Unfortunately we are not able to prove in a general setting that

&̂\ # I� k if and only if p( } , } ) is symmetric

for every density \>0.
Items (b) and (c) show that this is true for the simple exclusion and for

the k-step exclusion with nearest neighbor jumps in dimension 1 respectively.

Proof. Note that if + # S then

| T0� k f (') d+=| 0kTf (') d++| T02 k f (') d+ (9)

where

02 k f (')= :
'(x)=1x{0

qk(x, 0, ')[ f ({&x'0x)& f (')]

506 Guiol



We try to find conditions for which for all f # D

| T02 k f (') d+=0

(10)

| T02 k f (') d+= :
x{0

| qk(x, 0, ') '(0) '(x)[ f ({&x'0x)& f (')] d+

and since '0x=' when '(x)='(0), by translation invariance of + we
obtain

= :
x{0

_| qk(0, &x, ') '(&x) '(0) f (') d+

&| qk(x, 0, ') '(0) '(x) f (') d+&
= :

x{0
| [qk(0, x, ')&qk(x, 0, ')] '(0) '(x) f (x) d+ (11)

which is zero if p( } , } ) is symmetric and shows part (a).
Now let +=&\ , for \ # ]0, 1[. For all y # Zd "[0] let fy='( y). Then

writing (11) for fy and developing coefficients qk( . , . , . ) we obtain the three
following cases:

�� 1st case if k=1

| T02 k fy(') d+=\2 \[ p(0, y)& p( y, 0)]+\ :
x{0x{ y

[ p(0, x)&o(x, 0)]+
and as p( } , } ) is doubly stochastic

=\2(1&\)[ p(0, y)& p( y, 0)]

This last expression is null for all y only if p( } , } ) is symmetric. This ends
part (b);

�� 2nd case if d=1 (S=Z) and p(x, x+1)=1& p(x, x&1)= p,
q=1& p; without loss of generality we take y such that | y|>k, then (11)
is a polynomial in \ degree k+2 whose order 2l+1 coefficients,
3�2l+1�k+2 are

( p2l+1&q2l+1)+C 2l
2l+1pq( p2l&1&q2l&1)+ } s+C l+1

2l+1plq l ( p&q)
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and order 2l, 3�2l�k+2 are

( p2l&q2l)+C 2l&1
2l pq( p2l&2&q2l&2)+ } } } +C l+2

2l plql ( p2&q2)

Since these coefficients have the same sign then (11) is null only if
p=q=1�2. This ends part (c);

�� 3rd case For part (d) without loss of generality we may suppose
that p(x, x)=0, we then obtain a polynomial in \ of degree k+2 for which
0 is a root of order two and so it has at most k non null roots. Its lowest
degree term is

\2[ p(0, y)& p( y, 0)]

This term is constantly null only if p( } , } ) is symmetric. K

5. LAW OF LARGE NUMBERS

5.1. Introduction

We still suppose that p( } , } ) is translation invariant and S=Zd.
We are interested in the asymptotic behavior of a tagged particle

(respectively a second class particle) originally at x # S, when the other par-
ticles of the system are distributed according to &\ , the Bernoulli product
measure (0�\�1).

For k=1, supposing that p( } , } ) has a finite first moment, F. Spitzer(19)

has computed EXt , where Xt is the position of the tagged particle at time
t, and has shown the existence of an almost sure limit for Xt �t. C. Kipnis(12)

(in the nearest neighbors case in dimension one) and E. Saada(18) in the
other cases have shown that this limit is constant and equal to

lim
t � �

Xt

t
= :

y # Zd

yp(0, y) a.s.

5.2. Tagged Particle

For the tagged particle in the k-step exclusion process we have

Theorem 5.1. Suppose p( } , } ) has a bounded first moment. If the
k-step exclusion process as seen from the tagged particle has for initial
distribution &̂\ then,
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EXt=x+(1&\) t :
y

yp(0, y)+ } } }

+(1&\) t :
y

:
z1,..., zk&1{0, y

\#yp(0, z1) } } } p(zk&1 , y)

where #(z1 ,..., zk&1)=Card[z1 ,..., zk&1]

and

lim
t � �

Xt

t
exists a.s. and in L1

Proof. It's a corollary of Theorem 1.5 (see Liggett, (17) p. 396). By this
theorem Xt is stationary increasing. Then EXt is a linear function of t.

On the other hand

lim
t a 0

EXt&x
t

=(1&\) :
y

yp(0, y)+ } } }

+(1&\) :
y

:
z1,..., zk&1

\#(z1,..., zk&1)yp(0, z1) } } } p(zk&1 , y)

we have the first result.
The a.s. convergence of Xn �n is a consequence of the Ergodic theorem.

Noting that

E sup
0�t�1

&Xt&<�

and using a Borel-Cantelli argument we deduce the convergence for all t.
K

We then state a natural conjecture:

Conjecture 5.2. For k�2, under the hypothesis of Theorem 5.1

lim
t � �

Xt

t
=(1&\) :

y

yp(0, y)+ } } }

+(1&\) :
y

:
z1,..., zk&1

\#(z1,..., zk&1)yp(0, z1) } } } p(zk&1 , y) a.s.

Remark 5.3. The major difficulty to prove this is to shots that

&\ # (Ik)e

when k�2.
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Using coupling arguments of Pigged (1976) in ref. 15 it is possible, at
least for the nearest neighbor asymmetric case (i.e., d=1, p(x, x+1)= p,
p(x, x&1)=1& p, p{1�2), to show that &\ # (Ik)e .

5.3. Second-Class Particle

Let Yt be the position at time t of the second class particle originally
at x # Zd.

Theorem 5.4. With the hypothesis of Theorem 5.1 and if p( } , } ) is
symmetric then

EYt=x and lim
t � �

Yt

t
exists a.s. and in L1

Proof. The proof parallels the one for the tagged particle. K
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